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Abstract

In this paper, the equilibrium and growth behaviour of
faces (hkl) with more than one connected net is studied.
It is shown that for these types of orientation different
surface phases exist under equilibrium conditions as a
function of temperature. Depending on the exact
bonding topology at the surface, ¯at, rough or
disordered ¯at phases are found. Moreover, the growth
rate Rhkl of such faces can differ signi®cantly from the
usually calculated relative growth rates based on the
attachment energy. Monte Carlo simulations con®rm the
results from the Hartman±Perdok analyses and offer a
tool for the prediction of the crystal habit as a function
of supersaturation.

1. Introduction

Recently, a physical foundation for the description of
the stability of faces (hkl) of crystals in terms of
connected nets and periodic bond chains (PBCs) was
derived (Grimbergen, Meekes, Bennema, Strom &
Vogels, 1998). It was shown that application of the PBC
theory to a crystal structure often leads to many
connected nets for an orientation (hkl) and that speci®c
combinations of connected nets may even cause a face
(hkl) to roughen at 0 K �TR � 0�. This phenomenon was
called symmetry roughening and it can have major
implications for crystal morphology.

In a second paper (Meekes et al., 1998), all relevant
symmetry relations for pairs of connected nets of a
single orientation �hkl� were analysed. It was found that
some symmetry relations between connected nets cause
symmetry roughening and others result in the classical
Bravais±Friedel±Donnay±Harker (BFDH) selection
rules. The in¯uence of a mother phase in contact with
the crystal was included in the analysis.

In the present paper, besides crystal faces containing
symmetry-related pairs of connected nets, we also treat
pairs of connected nets for which such a symmetry
relation is not present. The present approach is not the
only one that takes (pseudo-) symmetry into account. In
particular, the reader is referred to the work of Follner
(1988). It will be shown, however, that despite the

absence of a symmetry relation the effective step free
energy can be very low resulting in what will be called
pseudo-symmetry roughening. In this paper, simple
crystal surface models, which are in our opinion generic
for many types of crystal, will be used to illustrate the
equilibrium and growth behaviour of a crystal face as a
function of the connected net structure. In some cases,
the presence of multiple connected nets gives rise to a
very small step energy which results in a roughening
temperature for the orientation �hkl� �TR

hkl� lower than
the calculated two-dimensional Ising transition
temperature �TC

hkl� based on the connected net with the
highest slice energy (Grimbergen, Meekes, Bennema,
Strom & Vogels, 1998). For other cases, a so-called
disordered ¯at (DOF) phase is found which is known
from simple statistical thermodynamical surface models
with next-nearest-neighbour interactions (Rommelse &
den Nijs, 1987; den Nijs & Rommelse, 1989). Recently,
DOF phases were found for the (111) (Woodraska &
Jaszczak, 1997a,b) and (100) (den Nijs, 1997) faces of
silicon and there is experimental (Grimbergen, Reedijk
et al., 1998) and theoretical (Grimbergen, Meekes,
Bennema, Knops & den Nijs, 1998) evidence that a DOF
phase exists for the (011) faces of naphthalene.

Obviously, the surface phase of a face �hkl� will also
affect the growth rate and mechanism of that face. It is
well known that the step free energy is an important
parameter that determines the growth rate to a large
extent. In the ¯at phase, the step free energy is larger
than zero and at low supersaturations layer-by-layer
growth occurs, whereas in the rough phase the step free
energy has vanished and continuous (rough) growth
occurs even at the lowest supersaturations. For a DOF
phase, the step free energy has vanished, but a differ-
ence in energy of crossing steps keeps the surface ¯at.
The effective nucleation barrier in the DOF phase
appears to be very small (Woodraska & Jaszczak,
1997a,b; Grimbergen, Meekes, Bennema, Knops & den
Nijs, 1998).

In general, we will show that crystal faces containing
multiple connected nets may have a very small effective
step energy which results in the growth rate being higher
than the traditionally calculated growth rate which
assumes a rate proportional to the attachment energy.
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The qualitative results are veri®ed by Monte Carlo
(MC) simulations of these speci®c orientations under
equilibrium and growth conditions. In this way, a
prediction of the crystal habit as a function of
temperature and supersaturation can be achieved. Note
that the morphology based on the attachment energy is
by de®nition independent of the supersaturation
(Hartman & Bennema, 1980). In this paper, ideal crystal
structures are treated which grow by a two-dimensional
nucleation mechanism. The effects of impurities or
defects are not explicitly taken into account.

In the following section, three model crystal graphs
are introduced. For all models, the (001) orientation
consists of multiple connected nets. In x3, the connected-
net analysis for the (001) faces of all models is presented
and the roughening transition temperatures are esti-
mated. In addition, the growth behaviour will be
discussed. In x4, the MC simulation results are presented
and, in x5, the MC results are compared with the results
of the connected-net analysis and the growth
morphology is derived. Moreover, from the simulation
data, the growth morphology as a function of super-
saturation is predicted. Finally, in x6, some conclusions
are drawn.

2. Model crystal graphs

In this section, three different types of crystal graph are
introduced which are generic for many crystals. The
attention will be focused on the (001) orientation of
these graphs. All (001) orientations have in common
that there are at least two different connected nets
present. The number of growth units in the unit cell of
all crystal graphs is two (Z � 2). Growth units are
labelled A and B to indicate that their position with
respect to the (001) orientation may be different. It is
assumed that the chemical composition of the growth
units is equivalent. In a crystal graph, growth units are
represented by points. Therefore, a crystal graph
generally has a higher symmetry than the corresponding
crystal and bonds in the crystal graph which are appar-
ently the same can be different due to the space-group
symmetry of the crystal.

The ®rst crystal graph is shown in Fig. 1. The (001)
orientation can be considered as that of a classical
simple cubic or Kossel crystal. However, the difference
is that in our model the (001) face is an AB-layered

structure. Two different types of crystal surface were
studied for the (001) face of this crystal graph. The ®rst
type has equivalent horizontal bonds and thus the bond
energies are equal ��a � �b� and the vertical bonds are
different ��c 6� �d�, � being the bond energy per
growth unit. In this case, we consider a layered structure
with alternating layers A and B with vertical bonds c and
d, respectively. This surface type will be referred to as
type I. Second, the case where the vertical bonds are
equivalent ��c � �d� and the horizontal bonds differ
��a 6� �b� is considered. This type of crystal face is
called type II. Note that in the isotropic case with
�a � �b � �c � �d the two types I and II become
equivalent and correspond to the well studied (001) face
of the Kossel model.

The second model graph of which the (001) orienta-
tion corresponds to a (110) Kossel-like face is shown in
Fig. 2. Again, it is clear that this orientation is an AB-
layered structure. Along the a direction, a horizontal
bond a is present, whereas in the b direction there is no
horizontal bond present. The oblique bonds p and q
make the crystal graph connected. This type of crystal
surface is called type III.

To study (001) AB-layered body-centred types of
crystal surface, the (001) face of a third model graph
depicted in Fig. 3 was used. Note that there are no
horizontal bonds present for the (001) orientation
neither in the a nor in the b direction, but exclusively the
oblique bonds p and q. This type of crystal facet is called
type IV.

3. Connected-net analysis

In the following subsections, all connected nets for the
(001) orientations of the model crystal graphs will be
presented brie¯y. All connected nets are used to derive
the overall broken-bond step energies.

3.1. Types I and II

Four connected nets can be identi®ed for the (001)
orientation of the crystal graph in Fig. 1. A [100]
projection of the connected nets is shown in Fig. 4. From
the ®gure, it can be clearly observed that the connected
nets �001�1 and �001�2 consist of two stacked �001�3 and

Fig. 1. Crystal graph for the AB-layered Kossel models (types I and II).

Fig. 2. Crystal graph for the modi®ed (110) Kossel model (type III).
The thin solid lines are drawn to indicate the unit-cell edges but do
not represent bonds of the crystal graph.
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�001�4 connected nets. The broken-bond step energy for
this orientation is equal to the step energy of a step
�001�1 [or �001�2] for both types I and II and is equal to
�1 � 2� in both the a and b directions. This step energy
determines the roughening transition temperature TR

001.
In the special case that �a � �b � �c � �d � �, the
roughening temperature will be governed by 1

�� 2 � ��. Again, this limiting case corresponds to the
(001) face of the simple cubic Kossel model. A type I
facet grows with either �001�1 or �001�2 growth layers
depending on the surface free energy of the surface
bounded by �001�1 or �001�2. In principle, the orientation
can grow alternately with �001�3 and �001�4 growth
layers when the energies do not differ too much. Type II
surfaces will grow alternately with layers �001�3 and
�001�4. Usually, it is assumed that the growth rate will be
determined mainly by the layer with the lowest growth
velocity.

3.2. Type III

The (001) face of the crystal graph in Fig. 2 contains
two connected nets �001�1 and �001�2. In Fig. 5, the [100]
projection of the connected nets is depicted. Assuming
that �p <�q, the (001) face will be bounded by
�001�1. The step energy is equal to the broken-bond step
energy, 1. This step energy can be found by calculating
the energy difference of the surface bounded by ���
and ��"'� (Fig. 5) (Grimbergen, Meekes, Bennema,
Strom & Vogels, 1998). For this case, 1 � �q ÿ�p for
both step �" and step '. Note that the broken-bond
step energy along the [010] direction is equal to the
broken-bond energy, �a. The growth kinetics for these
types of crystal facet are governed by the broken-bond
energy difference j�p ÿ�qj. If j�p ÿ�qj ! 0, the step
free energy will become very small. Therefore, it is
expected that the crystal facet becomes rough at very
low supersaturations and will grow in a rough (contin-
uous) mode �Rhkl / exp�����. A limiting case is the
situation where �p � �q. Then the model reduces to the
(110) face of a simple cubic Kossel model which has a
roughening temperature of 0 K. Note that for that case
formally no valid connected net is present for this
orientation (Grimbergen, Meekes, Bennema, Strom &
Vogels, 1998). Consequently, such a facet will grow in a

continuous (rough) mode and is in fact already rough at
zero supersaturation.

3.3. Type IV

Principally, the same situation described in the
previous subsection applies to the (001) orientation of
the crystal graph of Fig. 3. The fundamental difference
between faces of type III and type IV is that for type IV
the broken-bond step energies for the [100] and [010]
directions are equal to the step energies of type III faces
along the [100] direction. This step energy is equal to
j�p ÿ�qj and determines the roughening transition
temperature for type IV facets. Under growth condi-
tions, the two-dimensional nucleation barrier is deter-
mined only by the step energy j�p ÿ�qj.

A well known limiting case for which �p � �q is
described by the isotropic BCSOS model without next-
nearest-neighbour interactions (van Beijeren, 1977).
This model has a roughening transition temperature
�TR� of 0 K.

4. Monte Carlo simulations

4.1. Simulation set-up

For all simulations, a standard metropolis algorithm
was implemented. The rate of attachment of molecules
at a site �K�� is proportional to the supersaturation ��,

K����� � K�0 exp���=kT�; �1�
where k is the Boltzmann constant and T is the absolute
temperature. K�0 is the attachment rate at equilibrium
given by

K�0 � P�0 I0A; �2�
where P�0 is the probability that a growth unit impinging
on a site is correctly positioned to attach to the crystal
surface, I0 is the equilibrium rate of impingement of
growth units per unit area and A is the area of a lattice
site. In our simulation, we assume that P�0 is not
dependent on the type of bond that is being formed and
is taken to be a constant (Gilmer & Jackson, 1977). For
our AB-layered surfaces, the rate at which growth units
at the surface will detach depends exponentially on the

Fig. 4. Projection along [100] of the crystal graph in Fig. 1. Connected
nets are indicated with �hkl�n with n = 1, 2, 3, 4. The broken-bond
step energies 1 and 2 are also shown.

Fig. 3. Crystal graph for the (001) BCSOS model (type IV). The thin
solid lines are drawn to indicate the edges of the unit cell, but do not
represent bonds of the crystal graph.
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binding energy (EA
b for layer A and EB

b for layer B) of
the growth unit at the surface, which is strongly site
dependent,

Kÿ�EA
b =kT� � Kÿ0 exp�ÿEA

b =kT� �3�
and

Kÿ�EB
b =kT� � Kÿ0 exp�ÿEB

b =kT�; �4�
where Kÿ0 is a constant. At equilibrium, the average
detachment and attachment rates must be equal. For our
layered surface structures, we have assumed that the
average attachment rate is equal to the average
detachment rate of a growth unit with a binding energy
of exactly half of the average binding energy of a
growth unit in the fully occupied lattice, denoted ��,

K���� � 0� � Kÿ� ��=kT�: �5�
This implies, along with (1), the relation

K�0 � Kÿ0 exp��0=kT�; �6�
where �0 � ÿ �� is the average chemical potential at
equilibrium. In our simulation model, the anisotropy (�)
is de®ned in terms of bond energies � according to

� � ��1=�2� ^ ���1 ��2�=2� � �; �7�
with 0<� � 1. Relation (7) guarantees a constant lattice
energy for simulations with a different anisotropy. The
de®nition of the bonds used in the MC simulations of the
four types of crystal facet are listed in Table 1. Note that
bond energies are de®ned per growth unit (�) while in
the simulation the total energy of a bond (2�) is used.
Our simulation model has three free (dimensionless)
parameters, namely �=kT, � and ��=kT.

The solid-on-solid (SOS) condition was de®ned
differently for the different types of surface. For type I
and II faces, the standard SOS condition of the simple
cubic Kossel model was applied for which all incoming
growth units can only be bonded to an underlying
growth unit (c or d bond, see Fig. 1). A modi®ed SOS
condition has been applied for type III faces. Each
incoming growth unit has to make two bonds with the
interface (either p or q bonds, see Fig. 2). For the type IV
faces, four bonds (either p or q, see Fig. 3) have to be
formed. This is the well known BCSOS condition.

Sticking coef®cients, S, for the surfaces were de®ned
as

S � attachments ÿ removals

attachment attempts
; �8�

and crystal growth rates, R, by

R � SdhklK
�; �9�

where dhkl is the interplanar distance of the face (hkl).
A convenient unit of time used in MC simulations is

the Monte Carlo sweep (MCS), which is unity when the
number of attempted moves is equal to the number of
matrix sites. In our simulations, square matrices with
dimensions 30� 30 �L � 30� and 40� 40 �L � 40� were
used. The equilibration time was typically of the order of
1� 105±0:5� 106 MCS and the subsequent data
collection run 0:5� 106±1� 106 MCS. For the anisot-
ropy parameter, the values � � 1, 0.8, 0.6 and 0.4 were
chosen.

During the simulation, several quantities were calcu-
lated. A very important quantity is the height-difference
correlation function, which diverges in the case of
thermal roughening [for a review see Weeks (1986) and
van Beijeren & Nolden (1986)]. The height-difference
correlation function is de®ned as

G�r� � h�h�r� ÿ h�r0��2i �10�
and diverges in the case of thermal roughening as

lim
r!1

G�r�=a2 ! �K1�T�=�� ln�r�: �11�

Here, h�r0� is the height of a reference position,
r � jrÿ r0j is the lateral distance parallel to the surface,
a is the vertical periodicity and h : : : i denotes a thermal
average. The roughening temperature can be deter-
mined by locating the temperature at which the G�r�
function takes on the universal value K1 � 2=�
(Shugard et al., 1978). For our models, the periodicity is

Table 1. De®nitions of bonds used in the MC simulations
for the different model types I±IV

In the second and third columns, the bonds that lead to the anisotropy
(�1 and �2) are given for each model. The remaining bonds of each
model are shown in the fourth column and have a bond strength of �
per growth unit in our simulation model. In the ®fth column, half of the
average binding energy of a growth unit in the fully occupied lattice is
given and the last two columns contain the binding energies for a
growth unit in layer A or B with number of neighbours i within the
layer. Note that for the model types I and II i = 0±4 and for type III
i = 0±2. For model IV, the binding energy at a site does not depend on
the number of neighbours.

Type �1 �2 � �� EA
b EB

b

I �c �d �a;�b 6� ÿ2�1 ÿ 2i� ÿ2�2 ÿ 2i�
II �a �b �c;�d 6� ÿ2�ÿ 2i�1 ÿ2�ÿ 2i�2

III �p �q �a 6� ÿ4�1 ÿ 2i� ÿ4�2 ÿ 2i�
IV �p �q ± 8� ÿ8�1 ÿ8�2

Fig. 5. Projection along [100] of the crystal graph in Fig. 2 and the
crystal graph in Fig. 3. Connected nets are indicated with �hkl�n with
n = 1, 2.
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a � 2 [equation (11)] for the case � < 1 due to the AB-
layered structure. For � � 1, the periodicity is a single
layer and thus a � 1 was used in (11) to determine the
roughening temperature. The height-difference simula-
tion data were ®tted to the functional form
G�r� � �A=�2� ln�r� � C for L � 40 and r � 6±16. Note
that, for � � 1, thermal roughening occurs for the case
A � 2 and, for �< 1, roughening occurs for A � 8.

Another quantity that can be calculated easily during
the MC simulation is the surface speci®c heat c�T�. The
surface speci®c heat can be calculated from the surface
energy ¯uctuations as

c�T� � �1=NkT2��hE2
s i ÿ hEsi2�; �12�

where N is the number of matrix sites, k is the Boltz-
mann constant, T is the absolute temperature and Es is
the surface energy of the complete surface. Because of
its sensitivity to energy ¯uctuations in ®nite systems,
c�T� is a useful tool for indicating phase transitions.

The interface width h�h2i1=2 provides information on
the roughness of a crystal face and is de®ned as

h�h2i � �1=N�P
i

h�hi ÿ �h�2i; �13�

where N is the number of matrix sites and

�h � �1=N�P
i

hi: �14�

4.2. Equilibrium results

In Table 2, the results of the equilibrium MC simu-
lations for the four types of (001) facets are summarized.

4.2.1. Types I and II. The results for types I and II are
comparable. At low temperatures, the facets are
perfectly ¯at whereas at higher temperatures ®rst exci-
tations of single particles appear and eventually the face
becomes completely rough at high temperatures. As
already mentioned before, in the isotropic limit � � 1,
type I and II both represent the simple cubic Kossel
model. The Monte Carlo results for this case yield a
roughening temperature of kTR=� � 1:29, which is in
good agreement with previously reported values of
kTR=� � 1:28 (Leamy & Gilmer, 1974). Moreover, the

maximum in the speci®c heat at kT=� � 1:17 is in good
agreement with the reported value of kT=� � 1:15 by
Swendsen (1977).

From the connected-net analysis in x3, it was
concluded that the roughening temperatures TR of type
I and II surfaces are determined by the overall step
energy of a complete step (001). With the restrictions of
our MC simulations [see equation (7)], this step energy
is for both types equal to � � 2kT for the case �< 1. As
an estimate for the roughening temperature TR, the two-
dimensional Ising transition temperature TC of a simple
cubic isotropic connected net with a bond strength of 2�
can be calculated. Using the program TCRITIC (Hoeks,
1993), we found kTC=� � 2:27, which is in rather good
agreement with the calculated roughening temperatures
for the type I and II surfaces determined from the
height-difference correlation function G�r� as shown in
Table 2.

At the temperature at which the speci®c heat has a
maximum, the ¯uctuations of the surface energy are
maximal. The speci®c heat for type II surfaces is plotted
against the temperature in Fig. 6. We attribute the
increase in ¯uctuations to a drastic drop in the step free
energy of the strongest connected net �001�3 (for the
case �a >�b, see Fig. 4) which is present at the surface.
On the other hand, the roughening temperature has a
value that is considerably higher than the maximum in

Table 2. Results of the Monte Carlo simulations for �� = 0

For all four types of surface, the temperatures kT=� are listed where the speci®c heat c�T� has a maximum and the amplitude A of the height-
difference correlation function G�r� becomes 2 (� = 1) or 8 (�< 1) as a function of the anisotropy �.

Type I Type II Type III Type IV

c�T� G�r� c�T� G�r� c�T� G�r� c�T� G�r�
� �kT=�� �kT=�� �kT=�� �kT=�� �kT=�� �kT=�� �kT=�� �kT=��
0.4 1.74 2.22 2.10 2.41 1.40 3.10 1.25 ±
0.6 1.60 2.22 1.90 2.35 1.05 2.90 0.67 ±
0.8 1.33 2.22 1.74 2.25 0.70 2.65 0.31 ±
1.0 1.17 1.29 1.17 1.29 ± ± ± ±

Fig. 6. The speci®c heat c�T� for type II surfaces as a function of the
temperature kT=� for � = 1.0, 0.8, 0.6 and 0.4.
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c�T�. Moreover, TR is less dependent on the anisotropy,
at least for type I. The temperature interval between
T�cmax� and TR is rather small in the isotropic case, takes
on the largest value for very small anisotropy and
decreases again for larger anisotropies. In Fig. 7, the
interface width �h for type II surfaces is plotted.
Remarkably, in the anisotropic cases the interface width
becomes more or less linear at T � TR. Moreover, the
deviation for the anisotropic cases from the isotropic
surface, starting from ��=kT ' 1, clearly demonstrates
that the anisotropic surfaces maintain their ¯atness up to
higher temperatures. The difference in behaviour of the
isotropic surface and the slightly anisotropic surface
(� � 0:8) indicates that the introduction of anisotropy
has an unexpectedly pronounced effect. All these
observations suggest that for anisotropic AB-layered
Kossel-like faces the surface becomes locally disordered
but remains essentially ¯at at temperatures between
T�cmax� and TR. This intermediate phase might be
compared with that of a DOF phase, although such a
phase has not been identi®ed for such types of surface.

In order to gain more insight into the behaviour of the
step energy as a function of temperature, simulations
were performed for type II surfaces with and without a
complete step along [010]. This was performed by a
modi®cation in the periodic boundary conditions in such
a way that a complete (001) step (with height 2 due to
the AB-layered structure) is always present. From these
simulations the step energy densities for � � 1:0, � � 0:8
and � � 0:6 were calculated as shown in Fig. 8. If the
results are compared with Table 2, it is clear that the step
energy drops drastically at the temperature T�cmax� and
slowly approaches zero at TR. Thus, the steepness of the
step energy density drop is a measure of the tempera-
ture interval for the intermediate phase. The drop in
step energy can also be found in simulated growth
curves which will be presented in x4.3.

4.2.2. Type III. Recently, the phase diagram of type III
surfaces was derived showing a ¯at, a disordered ¯at

(DOF) and a rough phase. It was shown that the
temperature at which a maximum in the speci®c heat is
found coincides with the pre-roughening transition
temperature Tpr (Grimbergen, Meekes, Bennema,
Knops & den Nijs, 1998). The roughening transition at
T � TR was found at the point where the amplitude A
became larger than 8. The MC results of the present
study are equivalent to those presented by Grimbergen,
Meekes, Bennema, Knops & den Nijs (1998). It can be
concluded that type III surfaces are ¯at for T <Tpr,
disordered ¯at for Tpr <T<TR and rough for T>TR.
At T � Tpr, the step energy drops to a very small value.
This behaviour of the step energy as a function of
temperature can be compared with the results for type II
surfaces as shown in Fig. 8. The case of � � 1 is absent in
Table 2 because it corresponds to the anisotropic limit of
the model for which the step energy along the [100]
direction (see Fig. 5) is zero. Therefore, the roughening
temperature kTR=� is zero. It is not possible to perform
a reliable MC simulation for this limiting case.

4.2.3. Type IV. The results for type IV surfaces with
� � 1 are rather trivial since the step energies for both
the [100] and [010] direction are zero. This isotropic case
has a roughening temperature of 0 K (van Beijeren,
1977). For the case �< 1, the step energy is larger than
zero. A remarkable feature of the MC results for �< 1 is
that the amplitude A does not exceed the critical value
of 8, even at the highest temperatures, indicating that
the surface does not become rough (Table 2). In our
opinion, the results of the type IV surface model can be
compared with those of the staggered BCSOS model as
described by Mazzeo et al. (1995) and Nolden & van
Beijeren (1994), where for anisotropic surfaces with
attractive bonds only a ¯at and a DOF phase were
found. Therefore, we think that our model has a ¯at and
a DOF phase separated by a pre-roughening phase
transition which causes the maximum in the speci®c
heat. The absence of a rough phase must be attributed to
the very strict solid-on-solid condition. The tempera-

Fig. 8. Step energy density �E=L for type II surfaces as a function of
the temperature kT=� for � = 1.0 (kTR=� = 1.29), 0.8 (kTR=� =
2.25) and 0.6 (kTR=� = 2.35).

Fig. 7. Interface width �h for type II surfaces as a function of
temperature.
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tures at which the speci®c heat is maximal are in good
agreement with the calculated two-dimensional Ising
transition temperature of a simple cubic isotropic
connected net with a bond strength equal to the effec-
tive step energy ��p ÿ�q� calculated using the program
TCRITIC (Hoeks, 1993). The calculated two-dimen-
sional Ising transition temperatures were kTC=� � 1:10
�� � 0:4�, kTC=� � 0:64 �� � 0:6� and kTC=� � 0:28
�� � 0:8�.

4.3. Off-equilibrium results

In order to study the growth behaviour of the
different types of crystal face, MC simulations with
��=kT > 0 were performed. In the present study, we
restricted ourselves to simulations of perfect crystal
facets without dislocations. Thus, the growth mechanism
is two-dimensional nucleation growth at low super-
saturation and continuous (rough) growth at higher
supersaturations.

4.3.1. Types I and II. For the type I surfaces, the
surface (or attachment) energies for the two sublayers A
and B become different for the case �< 1. It is expected
that upon increasing the anisotropy (�! 0) the growth
rate will decrease as the attachment energy for a
complete double layer (001) decreases. The results of
the MC simulations are shown in Fig. 9. The tempera-
ture kT=� � 0:83 is chosen in such a way that all
surfaces are ¯at at �� � 0. It can be seen very clearly
that the nucleation barrier increases with decreasing �
(i.e. increasing anisotropy). An interesting detail in Fig.
9 is the behaviour of the sticking fraction for the
isotropic (� � 1) surface as compared with the beha-
viour of the sticking fraction for small anisotropy
(� � 0:8). It is clear that, when the anisotropic face starts
growing (�� � 0:45kT), it is almost immediately
growing linearly with increasing supersaturation. In
contrast, the isotropic (� � 1) surface starts growing at
much lower supersaturation ���=kT � 0:17) and

becomes linear at much higher supersaturation
���=kT ' 0:9�. At ��=kT � 0:55, the interface width
of the anisotropic surface becomes higher than that of
the isotropic surface.

Another interesting result of the dynamics simula-
tions for type I surfaces is that, at the supersaturation at
which the sticking fraction becomes approximately
linear, a maximum in the speci®c heat c���� is found for
the case �< 1. The corresponding supersaturations were
��=kT � 0:7 �� � 0:8�, ��=kT � 0:9 (� � 0:6) and
��=kT � 1:1 (� � 0:4). In the case of type II surfaces,
the situation is somewhat different. The attachment
energies are equivalent for both surfaces (A or B on
top). On the basis of the attachment energy criterion,
the growth rate should be the same independent of
the anisotropy. In Fig. 10, the sticking fraction is
plotted versus the supersaturation for a temperature
kT=� � 0:83. It can be concluded that the anisotropy
has the same kind of in¯uence on the nucleation barrier
as it has for type I faces. The shape of the curves,
however, is different. Still, as for type I surfaces, the
sticking fraction becomes almost immediately linear
when growth starts for the almost isotropic case
(� � 0:8). For the type II surface, the growth behaviour
was also studied at temperatures near the maximum in
the speci®c heat (in equilibrium). It appeared that the
nucleation barrier becomes very small at temperatures
above T�cmax� (Fig. 11). This is in correspondence with
the step-energy densities (Fig. 8) which drop to very low
values at this temperature. This behaviour of the step
energy as a function of temperature was found for both
type I and type II surfaces. A remarkable feature of the
anisotropic surfaces is that, at the supersaturation at
which the sticking fraction becomes more or less linear,
the interface width is very small indicating that the
surface is still ¯at. Generally, it was not possible to
derive a simple nucleation model which describes the
MC results for the anisotropic type I and type II
surfaces. These models are probably too simpli®ed to

Fig. 9. Sticking fraction S for type I surfaces as a function of the
supersaturation ��=kT at a temperature of kT=� = 0.83 and for
different anisotropies �.

Fig. 10. Sticking fraction S for type II surfaces as a function of the
supersaturation ��=kT for a temperature kT=� = 0.83 and
different anisotropies �.
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capture the essential kinetics of these more complicated
surfaces as compared with the (001) faces of a Kossel
crystal.

4.3.2. Type III. The results for type III surfaces are
described in detail by Grimbergen, Meekes, Bennema,
Knops & den Nijs (1998). In Fig. 12, the sticking fraction
versus supersaturation is plotted for these types of
surface. The temperature of kT=� � 0:67 was chosen
just below the pre-roughening temperature for the
surface with � � 0:8 (Table 2). It has already been
concluded from the connected-net analysis presented in
x3 that the step free energy along the [010] direction is
zero for � � 1:0. This is re¯ected in the absence of a
nucleation barrier for � � 1:0. With decreasing �, the
step energy increases and thus the nucleation barrier
increases. For this type of surface, the surface energy is
directly related to the step energy. When � increases, the
surface energy of the most favourable surface (A or B)
decreases. In terms of attachment energy, this implies
that the growth rate will decrease for the face. This is in
agreement with the MC simulation data (Fig. 12). It can
be shown that at temperatures above the pre-rough-
ening temperature Tpr this type of face still grows layer-
by-layer at low supersaturations (Grimbergen, Meekes,
Bennema, Knops & den Nijs, 1998). This result was also
found for type IV surfaces as explained in the following
section. The general behaviour of the sticking fraction
clearly deviates from that of the type I and II surfaces.
Only for the very anisotropic � � 0:4 surface, which
corresponds to step energies � for steps along [010] and
0.86� for steps along [100], is the effective anisotropy
very small in the sense that this surface behaves like a
type I isotropic surface. For this case, the sticking frac-
tion becomes indeed linear while for higher values of �
the sticking fraction saturates at lower supersaturations
to the maximum value of approximately 0.5, which is
determined by the SOS condition.

4.3.3. Type IV. In Fig. 13, the sticking fraction is
plotted versus supersaturation for a type IV surface with

� � 0:6 at different temperatures. From the equilibrium
simulations, it was found that the pre-roughening
temperature Tpr for this surface is kTpr=� � 0:67.
Looking at Fig. 13, it is clear that for temperatures
T>Tpr there is still a signi®cant nucleation barrier and
the sticking fraction is clearly not linear for these
temperatures. It is expected that at these temperatures
the crystal face will grow as a ¯at face by a layer-by-layer
mechanism. This is con®rmed by the analysis of the
average height of the surface [see equation (14)] as a
function of time (Fig. 14). It appears that the surface
grows with double layers AB (or BA) as expected from
the connected-net analysis. The behaviour of the inter-
face width for these types of surface is also remarkable.
The values stick for a rather broad range of ��=kT at a
value of unity and subsequently deviate slowly to higher
values. The supersaturation at which the interface width
starts to deviate from unity coincides with the super-
saturation at which the sticking fraction becomes linear.
In our opinion, the simulation data suggest that kinetic
roughening may occur for this type of crystal face, but at
rather high supersaturations. This can be attributed to

Fig. 12. Sticking fraction versus supersaturation for type III surfaces at
kT=� = 0.67.

Fig. 11. Sticking fraction S for type II surfaces as a function of the
supersaturation ��=kT for � = 0.6 and different temperatures
{kT=� [c�T�max] = 1.90}.

Fig. 13. Sticking fraction versus supersaturation for a type IV surface
with � = 0.6 at different temperatures [kT�cmax�=� = 0.67].
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the strict SOS restriction that is applied which causes a
decrease in available sites for attachment at the inter-
face as the roughness increases. In contrast, the number
of available sites for attachment of type I and II surfaces
does not depend on the surface roughness.

5. Implications for the morphology

In this section, the most widely used recipes to deter-
mine the relative growth rates of crystal faces (Rhkl) will
be discussed and compared with the MC simulation
results.

A well known purely geometrical recipe for the
relative growth rate Rhkl is given by

Rhkl / 1=dhkl; �15�
where dhkl is the interplanar distance for a face (hkl)
corrected for the X-ray re¯ection conditions given by
Bravais, Friedel, Donnay and Harker (BFDH) (Donnay
& Harker, 1937; Friedel, 1911). We will refer to this
method as the BFDH method. The success of this simple
recipe can be attributed to the fact that, for isotropic
crystals, faces with a large dhkl have a large energy
content and are, therefore, the most stable faces.

A recipe that is taking the energy of a face into
account is the frequently used attachment energy
method. The attachment energy is de®ned as the energy
released when a complete growth layer attaches to the
surface. The attachment energy is related to the crystal
energy by Ecr � Esl

hkl � Eatt
hkl, where Esl

hkl is the slice
energy. Hartman & Bennema (1980) argued that for
moderate supersaturations the relative growth rates may
be obtained by

Rhkl / Eatt
hkl: �16�

In the attachment-energy method, the interplanar
distances are also corrected for the X-ray re¯ection
conditions. Note that neither in the BFDH recipe nor in

the attachment energy do the temperature or super-
saturation play a role.

In this section, the crystal graph shown in Fig. 2 will be
used to demonstrate that the above-mentioned recipes
may lead to a very poor prediction of the growth
morphology. It is assumed that the A and B growth units
are chemically equivalent, but oriented differently. The
space-group symmetry is supposed to be Pmm2. All
connected nets were determined using the program
FACELIFT (Grimbergen et al., 1997). The connected
forms found, with the number of different connected
nets in parentheses, are f100g (1), f010g (2), f001g (2) and
f011g (1). The predicted morphologies based on equa-
tions (15) and (16) are shown in Fig. 15. Note that the
bond energies used to calculate the attachment energies
are de®ned according to relation (7) which guarantees a
constant lattice energy for different �. As a result, the
attachment energy for the f100g, f010g and f011g faces is
equal to 2� and independent of �. In contrast, the
attachment energy for the f001g faces does depend on
the anisotropy � and is equal to 2�1 (for �1 <�2) or
2�2 (for �1 >�2) [compare Figs. 15(c) and (d)].

From Figs. 15(a) and (b), it can be observed that for
this crystal graph there is already a large difference
between the forms predicted using the BFDH or
attachment-energy recipe. This difference can be
attributed to the special bond topology at the surfaces,
which is Kossel-like for the f110g and f100g faces and
Kossel (110)-like for the f001g and f010g faces. Using the
concept of symmetry roughening and pseudo-symmetry
roughening, it is possible to modify the attachment-
energy prediction by removing the faces that show
symmetry roughening or pseudo-symmetry roughening

Fig. 14. The average height of the matrix (size L = 40) versus simulation
time for type IV surfaces at kT=� = 0.83 and ��=kT = 0.3
(kTpr=� = 0.67).

Fig. 15. Predicted growth morphology for the model graph of Fig. 2
based on (a) Rhkl / 1=dhkl , (b) Rhkl / Eatt

hkl (� = 1.0), (c) Rhkl / Eatt
hkl

(� = 0.4) and (d) Rhkl / Eatt
hkl assuming that the f010g and f001g faces

are symmetry roughened and have grown out.
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from the morphology (see Fig. 15d). A better way to
predict the growth morphology is to derive the relative
growth rates directly from the MC simulations. For the
simulations, it was assumed that the f100g and f011g
faces can be modelled by an isotropic type I (� � 1)
surface, whereas the f001g and f010g faces were
modelled by a type III surface with � � 0:8 and � � 1,
respectively. This is reasonable as an anisotropy of
� � 0:8 has by far the most prominent effect on the faces
f001g and f010g. The simulations were performed at a
temperature of kT=� � 0:67. In Fig. 16, the growth
rates are plotted as a function of supersaturation. Owing
to the assumption that both the f100g and f011g faces
can be modelled with an isotropic type I surface, the
ratio R100=R011 is equal to the ratio of the interplanar
distances d100=d011. The ratios R001=R100 and R001=R011

change as a function of supersaturation owing to the
difference in surface bonding topology. According to the
simulation data, the crystal habit will be bounded by
f100g and f011g at low supersaturations (��=kT < 1.25).
For supersaturations ��=kT > 1.25, the f001g and f010g
faces appear as well. Notice, however, that the f010g
faces are rough owing to symmetry roughening. There-
fore, if these faces appear, they will be rounded-off.
Ultimately, at very high supersaturations, the
morphology becomes isotropic and all orientations
appear. This situation is, however, reached at a super-
saturation at which all faces will be kinetically rough and
the morphology will be sphere-like. Moreover, in prac-
tice this situation may never be reached as, at such high
supersaturations, growth is mainly determined by mass
transport limitations which are not present in our
simulation model. Therefore, the results for high
supersaturations probably represent a situation that will
not be encountered in practice.

6. Discussion and conclusions

For type I and II faces, two phases could be identi®ed,
namely a ¯at phase and a rough phase. The effective step
energy seems to be governed by the strongest connected
net as presented in x3. From this connected net, the
temperature at which the step energy becomes very
small can be estimated by calculation of the two-
dimensional Ising transition temperature TC. The exact
roughening transition temperature at equilibrium,
however, is in most cases much higher than the calcu-
lated value of the strongest connected net. The two-
dimensional Ising transition temperature based on the
step energy of a complete step (001) seems to give a
rather good estimate for the roughening transition
temperature TR. From the growth simulations, it can be
concluded that two-dimensional nucleation growth is
mainly determined by the step energy.

For type III surfaces, the step energy is determined by
a difference in bond energies (�p ÿ�q, Fig. 5). There-
fore, the assumption that the step energy (and rough-

ening temperature) is determined by the strongest
connected net present for the orientation does not hold.
Moreover, a special surface phase called a disordered
¯at phase was found (see Grimbergen, Meekes,
Bennema, Knops & den Nijs, 1998). In our opinion, the
step energy becomes very small at T � Tpr and there-
fore the nucleation barrier is very small. MC growth
simulations con®rm this behaviour, but it is very dif®cult
to determine the supersaturation at which kinetic
roughening occurs.

Type IV faces show a maximum in the speci®c heat at
a temperature that coincides with calculated two-
dimensional Ising transition temperatures based on the
effective step energies for the surface. At that
temperature, the step energies become almost zero, but
the height-difference correlation function indicates that
the surface is still not rough. It appears that this type of
face does not show a roughening transition at ®nite
temperatures. Similar behaviour was found for the
staggered BCSOS model by Mazzeo et al. (1995). This is
probably a result of the very strict SOS condition. Under
growth conditions, it can be shown that the nucleation
barrier has not disappeared at temperatures T>Tpr.
Moreover, the interface width indicates that the surface,
even at rather high supersaturations, is still relatively
¯at. The dynamics of these types of surface need to be
studied in more detail in order to understand the
nucleation and growth behaviour of these types of
crystal face.

The MC simulation data and the connected net
analyses show that the assumption that rough faces have
a high growth rate compared with macroscopically ¯at
growing faces is not generally valid. The growth rate
does depend on both the step energy and the surface
energy (or attachment energy) of a crystal face. In the
case of the presence of a DOF phase, it appears that
faces can have a very high growth rate and still be
macroscopically ¯at. Experimental examples of such

Fig. 16. Growth rates R as a function of supersaturation for the f100g,
f011g, f001g and f010g faces of the crystal graph of Fig. 2.
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growth behaviour were found for the (011) face of
naphthalene (Grimbergen, Reedijk et al., 1998), the
(110) faces of orthorhombic n-paraf®ns (Grimbergen,
van Hoof et al., 1998), the top faces of triacylglyceride
(fat) crystals (Hollander et al., 1999) and the (110) faces
of lysozyme (Grimbergen et al., 1999).

In this paper, it is shown that the BFDH and attach-
ment-energy predictions are not generally applicable as
the predictive value seems to be very poor even for
many practical crystal graphs, when compared with the
results of a complete connected-net analysis and MC
simulation data. The simulation data clearly demon-
strate that the morphology often depends very strongly
on the temperature and supersaturation. The latter
phenomenon is encountered frequently in the practice
of crystal growth, although the usual methods for
predicting the crystal morphology do not take it into
account.

The results of the present paper indicate that it is very
important to study the exact bonding topology in order
to predict surface phase transitions and growth kinetics.
The connected-net analysis yields important informa-
tion that can be used to predict the equilibrium and
growth behaviour qualitatively. Moreover, for crystals
with a complex bonding structure, the connected-net
analysis offers a tool to categorize the many connected
nets often present for a single orientation �hkl� into
relatively simple models of surfaces of the types treated
in the present paper. For the future, the combination of
a connected-net analysis, MC simulations and statistical
thermodynamical surface models appears to be a
powerful tool in predicting and understanding not only
the equilibrium but also the growth behaviour of crystal
faces quantitatively.
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